Lecture outline 2-13-09

Part of the period will cover numerical examples as in 2-11-09. The rest will be devoted to the points below.

1. Important characterization
of all points (x, y) which lie on the line of regression :

$$
\frac{y-\bar{y}}{x-\bar{x}}=r \frac{s_{y}}{s_{x}}
$$

Slope $=r \frac{S_{y}}{S_{x}}=r \frac{\hat{\sigma}_{y}}{\hat{\sigma}_{x}}=r \frac{\sqrt{\overline{y^{2}}-\overline{\mathrm{y}}^{2}}}{\sqrt{\overline{\mathrm{x}^{2}}-\overline{\mathrm{x}}^{2}}}$
pg. 197
2. Taking $x=0$ in $\frac{y-\bar{y}}{0-\bar{x}}=r \frac{s_{y}}{s_{x}}$ gives intercept $=\overline{\mathbf{y}}-\overline{\mathbf{x}}$ slope pg. 198
3. For every x, solving for y in $\frac{y-\bar{y}}{x-\bar{x}}=r \frac{s_{y}}{s_{x}}$
gives predicted $y=p t$ on regr line : pred $\mathbf{y}=\overline{\mathbf{y}}+(\mathbf{x}-\overline{\mathbf{x}})$ slope
4. For an approximately

ELLIPTICAL plot, at a given x
the distribution of y is approximately
NORMAL with
mean $=$ predicted y
std dev $=\sqrt{1-r^{2}} S_{y}$
Notice that the mean depends upon x but the std dev does not.
5. For an ELLIPTICAL PLOT the regression predictor
$\overline{\mathbf{y}}+(\mathrm{x}-\overline{\mathbf{x}})$ slope is optimal in the sense of least mean squared error of prediction.

5. r^{2} is exactly the fraction of $\hat{\sigma}_{y}{ }^{2}$ explained by the sample regression.

pp. 204-06 (Note text also uses R for r. The Greek "rho" ρ is also used for r).

